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Abstract. Recently, we have seen a surge of personalization methods
for text-to-image (T2I) diffusion models to learn a concept using a few
images. Existing approaches, when used for face personalization, suffer
to achieve convincing inversion with identity preservation and rely on
semantic text-based editing of the generated face. However, a more fine-
grained control is desired for facial attribute editing, which is challenging
to achieve solely with text prompts. In contrast, StyleGAN models learn a
rich face prior and enable smooth control towards fine-grained attribute
editing by latent manipulation. This work uses the disentangled W+
space of StyleGANs to condition the T2I model. This approach allows us
to precisely manipulate facial attributes, such as smoothly introducing a
smile, while preserving the existing coarse text-based control inherent in
T2I models. To enable conditioning of the T2I model on the W+ space,
we train a latent mapper to translate latent codes from W+ to the token
embedding space of the T2I model. The proposed approach excels in the
precise inversion of face images with attribute preservation and facilitates
continuous control for fine-grained attribute editing. Furthermore, our
approach can be readily extended to generate compositions involving
multiple individuals. We perform extensive experiments to validate our
method for face personalization and fine-grained attribute editing.

Keywords: Personalised Image Generation · Fine-grained editing

1 Introduction

Recent personalization methods [10, 37] for large text-to-image (T2I) diffusion
models [36, 39] aim to learn a new concept (e.g., your pet) given a few input
images. The learned concept is then generated using text prompts in novel con-
texts (e.g. diverse backgrounds and poses) and styles, thus controlling coarse
aspects of an image. Personalization of human portraits [51] is especially inter-
esting due to the wide range of applications in entertainment and advertising.
⋆ Equal contribution
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‘v1 as a knight 
in plate armour’

‘v1 wearing a santa hat 
in a snowy forest’

Fine-grained Attribute Editing 

… in a restaurant

v1: Continuous smile control

Adding Beard

v1

Interpolation

v1 v2Interpolations

‘colorful graffiti 
of v2’

‘v2 is playing the 
guitar’v2

‘v1 and v2 discussing a 
physics problem’v3

Single subject generation Single input image

v2: Continuous beard control

+Adding eyeglasses to v1 

Attribute Editing

‘v1 and v2 eating dinner 
at a restaurant’

+Adding smile to v1 and 
increasing age of v2

Multi subject generation 

Fig. 1: Given a single portrait image, we embed the subject into a text-to-image dif-
fusion model for personalized image generation. The embedded subject can then be
transformed or placed in a novel context using text conditioning. The proposed method
can also compose multiple learned subjects with high fidelity and identity preservation.
To obtain precise inversion of face, we condition the T2I model on the rich W+ latent
space of StyleGAN2. This enables our method to additionally perform fine-grained
control over the generated face with continuous control over facial attributes such as
age and beard.

However, embedding faces into a generative model has its unique challenges,
including faithful inversion of the subject’s identity along with its fine facial
features. More importantly, smooth control over facial attributes is crucial for
precise editing of generated faces, which is challenging to achieve with only text
(e.g., continuous increase in smile in Fig.1).

Advancements in StyleGAN models [17, 18] have enabled the generation of
highly realistic face images by learning a rich prior over face images. Further,
these models have semantically meaningful and disentangled W+ latent space
[41] that enable fine-grained attribute control in the generated images [1,13,31].
However, as these models are domain-specific and trained only on faces, they
are limited to editing and generating cropped portrait images.

This raises the following question - How can we combine the generalized
knowledge from T2I models with the face-specific knowledge from StyleGAN mod-
els? Such a framework will enjoy benefits from both groups, enabling coarse
control with text and fine-grained attribute control through latent manipulation
in the generation process. In this work, we propose a novel approach to combine
these two categories of models by conditioning the T2I model with W+ space
from StyleGAN2. Conditioning on the W+ provides a natural way for embedding
faces in T2I model by projecting them into W+ space using existing StyleGAN2
encoders [44]. The design of having W+ as the inversion bottleneck has two
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major advantages: 1) excellent inversion of a face with precise reconstruction of
attributes, and 2) explicit control over facial attributes for fine-grained attribute
editing. To the best of our knowledge, this is the first work to demonstrate the
combination of two powerful generative models StyleGANs and T2I diffusion
models for controlled generation.

To condition the T2I model on the W+ space, we train a latent adaptor -
a lightweight MLP, conditioned on the diffusion process’s denoising timestep. It
takes a latent code w ∈ W+ of a face as input to predict a pair of time-dependent
token embeddings that represent the input face and are used to condition the
diffusion model cross-attention. We observe that having a different embedding
for each timestep provides more expressivity to the inversion process. The latent
adaptor is trained on a dataset of (image, w) latent pairs, guided by identity loss,
a class regularization loss, and standard denoising loss. To further improve the
inversion quality, we perform a few iterations of subject-specific U-Net tuning on
the given input image using LoRA [15]. The embedded subject can then be edited
in two ways: i) coarse semantic edits using text (for e.g., changing the layout and
background) and ii) fine-grained attribute edits by latent manipulation in W+
(for e.g., smooth interpolation through a varying range of smiles, ages). Some
example edits are provided in Fig. 1. Our method generalizes the fine-grained
attribute edits from cropped faces (in StyleGANs) to in-the-wild and stylized face
images generated by T2I diffusion model.

The proposed method can be easily extended for multiple-person generation,
which requires high fidelity identity of all the subjects (Fig. 1). We first predict
separate token embeddings for each person and then perform subject-specific
tuning to obtain personalized models. However, training a single personalized
model for multiple subjects results in the problem of attribute mixing (Fig. 5)
between faces, where attributes from one face are mixed with another. Instead,
we learn separate subject-specific LoRA models, which are then jointly inferred
with a chained diffusion process. The intermediate outputs for these processes
are merged using an instance segmentation mask after each denoising step. This
framework resolves attribute-mixing among subjects and preserves the identity
from the fine-tuned models. The attributes of individual subjects can be edited
in a fine-grained manner in W+ while preserving the other subjects’ attributes
as shown in Fig. 1-(Attribute Editing).

We perform extensive experiments for embedding single and multiple sub-
jects in StableDiffusion [36] model. Compared to the existing personalization
method, the proposed method is extremely efficient and achieves a good tradeoff
between identity preservation and text alignment. Next, we present results for
fine-grained attribute editing with continuous control in the W+ latent space
and compare performance with existing editing methods. Finally, we compare
the results for composing multiple subjects and attribute editing of individual
subjects. In summary, our primary contributions are as follows:

– First approach to combine large text-to-image models with StlyeGAN2 by
conditioning T2I on rich W+ latent space
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– Effective personalization method using a single portrait image enabling fine-
grained attribute editing in W+ space and coarse editing with text prompts.

– Novel approach to fuse multiple personalized models with chained diffusion
processes for multi-person composition.

2 Related Work

Text-based image generation. Large text-to-image diffusion models [33, 36,
39] achieve excellent image generation performance when trained on internet
scale captioned image datasets [40]. These models are scaled to high resolution
by learning cascaded diffusion models [33, 34, 39] that generate low-resolution
images followed by upsampling. Another promising approach is to train diffusion
models in the compressed latent space of a pretrained autoencoder [36].
Personalization aims to embed a concept in T2I model, given a few input
images. One group of methods optimize for object-specific token embeddings [2,
10,51] via optimization. These approaches preserve text editability, however, they
struggle to preserve identity. Another direction is based on fine-tuning diffusion
model with strong regularization to avoid overfitting [19, 22, 37]. The third set
of methods [11, 38, 45, 48–50, 53, 54] learns a shared domain-specific encoder for
faster inversion by leveraging the class-specific features.
Embedding faces. Recently embedding human faces in T2I models has received
a lot of attention [8,11,49,51,53] as the generic personalization methods [10,37]
often fail to faithfully embed human faces. Celeb-basis [51] learns a basis of the
celebrity names in the token embedding space. The weights of these basis vectors
are then predicted by an encoder model applied to the input image. Profusion [53]
proposes a regularization-free encoder-based approach. Photoverse [8] applies a
dual branch conditioning in text and image domains for faster and more accurate
inversion of faces. Although these methods are able to achieve good inversion,
they do not allow for fine-grained attribute control. A concurrent work [24]
aims to map the W+ space to the T2I model, however, their method is limited
in preserving identity.
Image editing. Trained T2I models serve as strong image priors and enable
various image editing and restoration applications [5,25,29,47]. For fine-grained
image editing [14,28,29] localizes the object in the image space using attention
masks and only allows editing in the specified region. However, these methods
rely on text to change the localized object, which does not allow for fine-grained
control. Promising approaches like [4, 12] provide a finer control by interpola-
tion in the noise space or training special sliders per attribute. Another set of
works explores the intermediate feature space of unconditional diffusion models
to obtain finer attribute control in generation [23,26]. However, they are limited
to editing of generated images and not personalized subjects. We take inspira-
tion from GAN models to attain fine-grained attribute control for real subjects
by leveraging their disentangled and smooth latent spaces [16, 41]. This enables
precise attribute editing through latent manipulation [1, 27, 31, 41] and we aim
to embed these properties in pretrained T2I models.
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3 Method

3.1 Preliminaries

Text-to-image Diffusion Models. This work uses StableDiffusion-v2.1 [36] as
a representative Text-to-image (T2I) diffusion model. Stable diffusion is based on
the latent diffusion model, which applies the diffusion process in the latent space.
Its training involves two stages: a) training a VAE or VQ-VAE autoencoder to
map images to a compressed latent space, and b) training a diffusion model in
its latent space conditioned on text for guiding the generation. This framework
disentangles the learning of fine-grained details in the autoencoder and semantic
features in the diffusion model, resulting in easier scaling.
Style-based GANs, [6, 17, 18] have been widely adapted to generate realistic
object-specific images such as faces. Further, these models have disentangled la-
tent space, which enables smooth interpolation between images and fine-grained
attribute editing [31,41]. These properties are induced by mapping the Gaussian
latent space to a learned latent space W/W+ with a mapper network. Further,
GAN encoder models [35,44] can encode and edit real images that invert a given
image into W+ space, allowing for fine-grained editing of real images.

3.2 Overview
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Fig. 2: Framework for personalization.
Given a single portrait image, we extract its
w latent representation from encoder EGAN .
The latent w along with diffusion timestep
t are passed through the latent adaptor M
to generate a pair of time-dependent token
embeddings (v1t , v

2
t ) representing the input

subject. Finally, the token embeddings are
combined with arbitrary prompts to gener-
ate customized images.

While the T2I models trade off
the diversity in generation with an
attribute-rich latent space, our goal
is to condition the T2I model with
an attribute-rich - W+ space from
StyleGAN2, that allows for disentan-
gled and fine-grained control over the
face attributes in the generated im-
age. To condition the T2I model on
W+, we augment the T2I model with
a learnable latent adaptor network M
that projects a latent code w ∈ W+
into the text embedding space. For
embedding a new subject, we pass
it through a pre-trained StyleGAN2
encoder EGAN [44] to obtain w la-
tent code, which is passed through
M to obtain the corresponding text-
embedding as shown in Fig. 2a). Con-
ditioning on W+ enables fine-grained
attribute control in the generated im-
age by latent manipulation. In the
next sections, we discuss the details
of the proposed latent adaptor, model
training, and fine-grained attribute
editing.
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3.3 Latent adaptor M
We implement the latent adaptor M as a shallow MLP network that maps the
w latent code from StyleGAN to the token embedding space of the T2I model
for any human face image as input. We learn two token embeddings (v1, v2) to
represent a human subject as it is known to improve the embedding quality [51].
To extract the timestep-specific semantic information from the latent w, we con-
dition M on the diffusion timestep t, as diffusion models represent the semantic
hierarchy in a timestep-wise fashion [30]. The output of M is a set of pair of em-
bedding vectors {(v1t , v2t )}t=T

t=0 , a pair for each timestep t. Time-dependent token
embeddings allow for a richer representation space and improve identity preser-
vation (shown in Fig. 12). The complete architecture of M is shown in Fig.2b).
The input t is first passed through positional encodings [43] and the flattened w
latent code is passed through a self-attention layer to get relevant features. The
encoded representations are then concatenated before passing through a set of
linear layers. The obtained pair embedding (v1t , v

2
t ) represents the person and is

then passed at tth denoising time-step in the U-Net for generation.

3.4 Training

We perform a two-stage training, where we first pretrain latent adaptor M on a
face dataset, followed by an few iterations of subject-specific training of M and
diffusion U-Net with low-rank updates for improving identity as detailed below.
Pretraining. The mapper M is pretrained with a paired dataset Dw consisting
of (I, w) pairs, where I is a portrait face image and w is its corresponding
latent code obtained as EGAN (I). During training, we sample a pair (I, w) and
a denoising timestep t ∈ (1, T ) which are passed through M to obtain the pair
of token embeddings (v1t , v

2
t ) corresponding to the input subject. We place the

sampled tokens along with the neutral prompt - y =‘A photo of a ... person’ and
pass through the text encoder to obtain the final text embeddings c(y(M(t, w))).
We add the noise from the noise schedule at t to the image I and train diffusion
loss along with additional regularization losses shown in Eq.1 to train M. In this
stage of training, all the modules - EGAN , text-encoder, and U-Net are frozen,
except for M which is a shallow MLP, making the training compute efficient.

Input

τ = 0.4

Editability    Identity preservation

τ = 0.14 τ = 0.2τ = 0.0 τ = 0.1 τ = 0.6

τ = 0.2 τ = 0.6τ = 0.0 τ = 0.1 τ = 1

Fig. 3: Delayed identity injection results in better
text editability.

Subject specific training.
In the second stage, we fine-
tune encoder M and U-Net
for a few iterations with the
single input image. Specifi-
cally, we perform low-rank
weight updates (LoRA [15])
on the U-Net projection matrices and fine-tune M, using the combined loss from
Eq. 1. In LoRA training, the model weights are updated as W = W + α∆W ,
where ∆W is the learned low-rank residual weights. The hyper-parameter α
controls the extent of fine-tuning and allows for a trade-off between identity
preservation and text editability. This second stage of low-rank tuning improves
the subjects’ identity without hurting the text editability (Fig. 12).
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Loss function. We train latent adaptor with a combination of denoising dif-
fusion loss LDiffusion and regularization loss Lreg following [11]. The diffusion
loss enforces text-to-image consistency, and regularization loss ensures that the
predicted token embedding is close to the token embedding of the superclass
vcls, such as face. Additionally, we add identity loss LID defined as the MSE be-
tween the face recognition embeddings from [9] to preserve the identity during
inversion. The final loss is computed as a linear combination of these losses:

LDiffusion = Ez,y,ϵ,t[||ϵ− ϵθ(z, c(y(M(t, w)))||22]
Lreg = ||M(t, w)− vcls||22
LID = ||EID(xt)− EID(I)||22

L = LDiffusion + λregLreg + λIDLID

(1)

where λreg and λID are hyper-parameters and EID is pretrained face-recognition
model [9]. To compute Lid at the intermediate denoising step, we use DDIM [42]
approximation of the clean image x̂0 and pass it to the face detector.

3.5 Inference

w

d 

w*=w+βd 

Single Image

Generated Image Edited Image

‘A photo of __ on 
park bench’

β 
edit strength

ɛGAN

U
-N

et

U
-N

et

M M

edit direction
Beard

Fig. 4: Fine-grained attribute editing.
We map the given input image into w la-
tent code, which is shifted by a global linear
attribute edit direction to obtain edited la-
tent code w∗. The edited latent code w∗ is
then passed through the T2I model to ob-
tain fine-grained attribute edits. The scalar
edit strength parameter β can be changed
to obtain continuous attribute control.

During inference, given a single image
I, we obtain its token embedding as
(v1t , v

2
t ) = M(EGAN (I), t) for all the

time steps t ∈ (1, T ). These embed-
dings can be added with text prompts
to generate a novel composition of the
learned subject. The image generation
process in diffusion models follows a
hierarchical structure, where the lay-
out is formed in the first few steps,
followed by the formation of object
shape and appearance [29]. As our
primary aim is to embed a subject’s
identity, we inject the obtained token
embedding only after a time threshold
(t < τ) to not hurt the layout gener-
ated during the initial timesteps.
For the initial denoising timesteps
(t > τ), we use a celebrity name as
a placeholder in the prompt, e.g. ‘A
photo of Brad Pitt as a star wars character’ as the model generates improved
image layouts when prompted popular subjects. Empirically, we observe that
the generations are not sensitive to the text celebrity name used, and it acts
as a placeholder, so we fix a single celebrity name, and there is no overlap of
the identity with the dataset used for evaluation. This delayed injection of the
learned embedding improves text alignment, and passing the predicted token
embeddings to all the timesteps results in poor compositions where the model
output is a cropped face, as shown below in Fig. 3.
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3.6 Fine-grained control over face attributes

Once trained, the latent adaptor M bridges between disentangled and smooth
W+ latent space and the text-conditioning of the diffusion model. This enables
the transfer of latent attribute editing methods that function in the W+ space
of StyleGANs [13, 31, 41] to the diffusion model. Specifically, for a given source
image Is, we first obtain its corresponding w latent code with EGAN . Next, we
edit the latent code w by adding a global linear attribute edit direction d with
scalar weight β to obtain ŵ = w + βd. Note, the same global edit direction d
generalizes for all the identities in the W+ space [41]. The edited latent code ŵ

   w/o subject        
specific tuning Joint training Oursv1

v2

A v1 and v2 person sitting on a park bench 

c)a) b)

2
Fig. 5: Composing multiple persons with-
out finetuning results in identity distortion.
Finetuning a single model for both the iden-
tities results in attribute mixing, the age and
facial hairs from v1 are transferred to v2.
Combining outputs of individual finetuned
models results in excellent identity preser-
vation without attribute mixing.

is then passed through M to ob-
tain the edited token embedding v̂t.
Notably, one can precisely control
the strength of the attribute edit by
changing the scalar β as shown in
Fig. 9. To preserve the scene layout
during editing, we use the same start-
ing noise and copy the self-attention
maps obtained during the generation
with unedited w similar to [29]. Fur-
ther, one can easily combine multiple
edit directions by taking a weighted
combination of individual attribute
edits (Fig. 10), thanks to the linearity of the W+.

3.7 Composing multiple persons

zt

‘vt  person on the beach’ 

‘ut on the beach’

‘A photo of a beach’

Subject 1 mask

Subject 2 mask

Bgd mask

zt-1
v

zt-1
u

zt-1
b

Compose

zt-1

fine-tuned on v

fine-tuned on u

w/o tuning

U-Net

Fig. 6: Composing multiple subjects.
We run multiple parallel diffusion pro-
cesses, one per subject and one for the
background, which are fused using instance
masks at each denoising step. Importantly,
the diffusion process for each subject is
passed through its corresponding fine-tuned
model, which results in excellent identity
preservation.

Our method can be extended to com-
pose multiple subject identities in
a single scene. Naively, embedding
multiple token embeddings (one per
subject) in the text prompt with-
out subject-specific tuning results in
identity distortion Fig. 5a). Jointly
performing subject-specific tuning im-
proves the identity but suffers from at-
tribute mixing, where facial attributes
from one subject are transferred to
another, such as age and hairs in
Fig. 5b). This is a well-known is-
sue in T2I generation, where the
model struggles with multiple objects
in a scene and binds incorrect at-
tributes [7]. We take an alternate approach inspired by MultiDiffusion [3], where
we run multiple chained diffusion processes, one for each subject and one for the
background. The outputs of these processes are combined at each denoising step
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Fig. 7: Comparison for single subject personalization. Existing personalization
methods designed for generic concepts either achieve good Identity similarity (Custom
Diffusion) or Prompt similarity (Celeb Basis, Dreambooth, Dreambooth+Lora) but fail
to achieve both simultaneously. Like ours, Celeb Basis is a single image, face-specific
personalization method that achieves good prompt similarity. However, faces generated
by Celeb Basis have a cartoonish look and lack realism. Our method strikes a perfect
balance between Identity similarity and Prompt similarity, as shown in the plot, and
generates highly photo realistic images following the text.

using an instance segmentation mask. We run the diffusion process for each sub-
ject through its corresponding subject-specific finetuned model. This preserves
the subjects’ details learned by each finetuned model and enables high-fidelity
composition of multiple persons without attribute mixing. To obtain an instance
segmentation mask, we run a single diffusion process with a prompt contain-
ing two persons and apply the off-the-shelf segmentation model SAM [20] on the
generated image. Further, we can perform fine-grained attribute edits on a single
subject with latent manipulation in W+ space while preserving other subjects,
as shown in Fig. 1.

4 Experiments

We perform all our experiments on StableDiffusion-v2.1 [36] as a representative
T2I model. For inversion, we use pre-trained StyleGAN2 e4e encoder [44] trained
on the face dataset to map images in W+. In the following sections, we first dis-
cuss the datasets and metrics (Sec.4.1), followed by results on single-subject and
multi-subject personalization (Sec.4.2), fine-grained attribute editing (Sec.4.3),
and ablation studies (Sec.4.4).

4.1 Dataset and metrics

Dataset. The latent adaptor is trained with a combination of synthetic images
generated from StyleGAN2 and real images from the FFHQ [17] dataset. The
dataset contained 70K image and corresponding w latent codes obtained from
e4e [44]. We collected a dataset of 30 subjects for evaluation, including scientists,
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celebrities, sports persons, and tech executives. We also evaluate on ’non-famous’
identities and synthetic faces in supplementary. We use a set of 25 diverse text
prompts, including texts for stylization, background change, and doing certain
actions. Further details about the setup is provided in the supplementary.
Metrics. We evaluate the personalization performance using two widely used
metrics for subject personalization: Prompt similarity - to measure the align-
ment of the prompt with the generated image using CLIP [32], and Identity
similarity(CS) - to measure the identity similarity between the input image and
the generated image using cosine similarity between face embeddings from [46].
To evaluate fine-grained attribute editing, we compute the change in Prompt
similarity (∆ CLIP) with the attribute prompt (e.g., ‘A v1 person smiling’)
before and after the edit. Additionally, we measure the change in the image dur-
ing editing with LPIPS [52] and Identity similarity. For an ideal fine-grained
attribute edit, a higher ∆ CLIP indicates a meaningful edit and a lower LPIPS
and higher ID-sim denotes the preservation of source identity.

4.2 Comparison with personalization methods.
  Inputs           Textual Inversion     Custom Diffusion     Celeb Basis            Ours

v1 and v2 playing chess - closeup

  v1 and v2 in fighting in a ring

v2 and v3 sitting on a park bench

v2 and v3 eating a giant pizza in a restaurant 

v3 and v4 having dinner together

v3 and v4 posing for a photo after a tennis game

v1

v2

v3

v3

v2

v4

       Inputs        Textual–Inversion          Celeb-Basis       Custom diffusion             Ours

v1 and v2 playing chess - closeup

v1 and v2 fighting in a ring

v2 and v3 sitting on a park bench

v2 and v3 eating a giant pizza in a restaurant 

v1

v3 and v4 having dinner together

v3 and v4 posing for a photo after a tennis game

v2

v3

v3

v2

v4

         5 images 5 images        1 image         1 image

Fig. 8: Comparison for multi-subject
generation. Textual Inversion struggles
to generate both the subjects and dis-
torts their identities. Custom Diffusion and
Celeb Basis can compose but suffer from at-
tribute mixing - the same hairstyle and fa-
cial features are copied to both faces. This
effect is more pronounced in Celeb Basis.
Our method disentangles the attributes of
the two subjects and generates identity-
preserving composition.

Single-subject personalization. We
perform single-image personalization
on the evaluation set with diverse text
prompts in Fig. 7, 13 & S8. We
compare with following fine-tuning-
based personalization methods: Cus-
tom Diffusion [22], Dreambooth [37],
Dreambooth+LoRA, which is Dream-
booth with low-rank updates to avoid
overfitting, Textual Inversion [10] and
Celeb Basis [51]. All the methods are
trained with 5 images per subject ex-
cept Celeb-basis and ours, which op-
erate on a single input image. De-
tails about hyper-parameters for com-
petitor methods are provided in the
supplementary. Custom Diffusion em-
beds a subject while preserving its
identity; however, it mostly gener-
ates closeup faces and does not fol-
low the text prompts to stylize the
subject or to have it perform an ac-
tion. Dreambooth cannot embed the
subject’s identity faithfully, whereas
with LoRA training, the identity is
improved along with text alignment,
which helps avoid overfitting. Textual Inversion and Celeb Basis have poor iden-
tity preservation as they fine-tune only the token embedding and not the U-Net.



PreciseControl 11

Celeb Basis achieves the highest text alignment due to the strong regularization
imposed by basis spanning across celebrity names. Our method strikes a per-
fect balance between text alignment and identity preservation. Note that ours
and the Celeb Basis use only 1 input image, which slightly affects the identity,
against Custom-diffusion that requires 5 images. We have provided an additional
comparison with encoder-based models and the recent IP-adaptor [50] method
in supplementary material.
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Fig. 9: Attribute Control. We perform
continuous attribute editing by adding an
attribute edit direction in W+ and in-
creasing its edit strength β. Our method
performs disentangled edits for various at-
tributes while preserving identity and gen-
eralizing to in-the-wild faces, styles, and
multiple persons. Identity Interpolation.
We can perform smooth interpolation be-
tween identities by interpolating between
the corresponding w codes.

Multi-subject personalization. We
present results for embedding multiple-
person composition in Fig. 8, 14,
S7. Specifically, we combine the in-
termediate outputs of subject-specific
tuned models during generation. We
compare against multi-concept per-
sonalization methods, Textual Inver-
sion, Custom Diffusion, and Celeb Ba-
sis. For Textual Inversion and Celeb
Basis, we learned two separate to-
ken embeddings, one for each sub-
ject. For Custom Diffusion, we jointly
fine-tune the projection matrices on
both subjects. Textual Inversion fails
to generate both the subjects in the
scene. Celeb Basis and Custom Dif-
fusion generate both the subjects
but suffer from attribute mixing (eye-
glasses from v4 are transferred to v3 ).
As noted earlier, Celeb Basis gener-
ates cartoonish faces in most cases.
Our method resolves the attribute
mixing by running multiple subject-
specific diffusion processes and results
in highly realistic compositions.

4.3 Fine-grained control by
latent manipulation

The proposed method matches the
disentangled W+ latent space of
StyleGANs to the token embedding
space of T2I models, allowing for con-
tinuous control over the image at-
tributes by latent space manipulation. We present two important image editing
applications fueled by the disentangled latent space of StyleGANs: 1) fine-grained
attribute editing and 2) smooth identity interpolation. Additionally, our model
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Table 1: Comparison of fine-grained attribute editing
Imagic InterfaceGAN Ours + Prompt Ours + W+

Attribute ∆ CLIP ↑ LPIPS ↓ CS ↑ ∆ CLIP ↑ LPIPS ↓ CS ↑ ∆ CLIP ↑ LPIPS ↓ CS ↑ ∆ CLIP ↑ LPIPS ↓ CS ↑

Beard 4.184 0.533 0.492 2.644 0.221 0.732 0.986 0.232 0.877 2.473 0.185 0.731
Age 4.432 0.571 0.474 1.359 0.220 0.744 0.429 0.202 0.929 1.777 0.209 0.698

Smile 1.945 0.499 0.666 1.800 0.188 0.804 0.784 0.317 0.813 1.104 0.190 0.779
Asian 5.908 0.585 0.478 4.198 0.139 0.708 1.008 0.330 0.804 4.917 0.165 0.625
Black 5.806 0.546 0.347 1.748 0.147 0.825 0.897 0.222 0.898 1.877 0.133 0.834

can restore corrupted face images such as low resolution or inpainting masked
facial features in supplementary.
Fine-grained attribute editing. We perform attribute editing by adding a
global latent edit direction in W+ to w encoding of the input image. To have
a unified method for all the attributes, we take a simplified approach to obtain
edit directions, gathering a small set (< 20) of paired portrait images before

  Beard +

A
ge

+

Fig. 10: Multi-attribute-control. We
can perform continuous edits for two at-
tributes simultaneously by taking a lin-
ear combination of attribute edit direc-
tions. Observe the smooth and disentangled
edit transformations for age and beard at-
tributes while preserving identity.

and after the attribute edit (generated
using an off-the-shelf attribute editing
method). Next, we take a difference
between the corresponding paired w
latent and average them to obtain a
global edit direction. We found global
edit direction for smile, age, beard,
gender, race, and eyeglasses. We also
show edits with directions obtained
using InterfaceGAN [41] in Fig. S6 in
supplementary. The results for fine-
grained control editing are provided
in Fig. 9 & 10, where we show dis-
entangled continuous control for vari-
ous attributes by changing β (ref. Sec.
3.6) while preserving the identity. Our
method generalizes the edit directions
in W+, originally defined for portrait
faces, to in-the-wild and stylized face
images. We evaluate attribute editing
performance against 1) StyleGAN-
based global editing method Inter-
faceGAN [41], after encoding the image using e4e, 2) Prompt-based editing
of the learned subject (by giving prompts like ‘A photo of v1 smiling’), 3) Text-
based editing method Imagic [19] build on single image personalization. The
quantitative results are present in Tab. 1, and qualitative results are in Fig. 11.
Our method achieves the lowest LPIPS scores with high ∆ CLIP, indicating
highly disentangled attribute editing. Both text-based editing methods fail to
preserve the image regions (higher LPIPS). We achieve high CS scores during
edits with higher ∆ CLIP, indicating identity-preserving attribute edits. Ours
prompt-based editing achieves a superior CS because the edit is not performed
in many cases indicated by lower LPIPS [52]. Like ours, InterfaceGAN works in
W+ latent space and performs similarly in preserving
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      Source          InterfaceGAN             Imagic           Ours + Prompt     Ours + W+ 
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Fig. 11: Comparison for attribute
editing. Using images for text-based at-
tribute edits results in identity distortion
and lacks realism after edit. As both In-
terfaceGAN and our method leverage the
same disentangled latent space, they gener-
ate high-quality edits. However, Interface-
GAN is limited to cropped faces while we
can edit in-the-wild images too.

the image content, the identity of the
subject, and editability. However, it
is limited to the editing of portrait
faces generated by StyleGANs and
loses fine-facial features, whereas our
method combines the best of both
worlds, allowing for fine-grained la-
tent editing with semantic editing in
T2I models.
Identity interpolation. W+ space
also allows for smooth interpolation
between two identities. Given two in-
put images, we obtain their corre-
sponding w latent codes and perform
linear interpolation to obtain the in-
termediate latent codes. When used
as conditioning through the latent
adaptor, these latents result in realistic face interpolations with smooth changes
between the two faces, preserving background, as shown in Fig. 9-Bottom.

4.4 Ablations

Te
xt

 E
di

ta
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lit
y

Identity Preservation (CS)

w/o LIDw/o Lreg w/o  time 
conditioning

w/o subject
 specific tuning

Ours

‘v1 wearing a black robe with lightsaber’

w/o subject
-specific tuning

Joint training 
method

Ours w multi 
diffusion

Identity Similarity (CS)

Te
xt

 S
im

ila
ri

ty

Fig. 12: Ablation study

We ablate over the design choices
made in the proposed approach for
personalization in Fig. 12. The Iden-
tity loss and regularization loss have
a similar effect in pushing the token
embeddings close to an embedding
region for faces. Time-dependent to-
ken embedding is crucial to preserv-
ing subjects’ identity as it provides a
more expressive space to represent the
face. Finally, subject-specific tuning
with combined loss improves the Iden-
tity similarity as well as the Prompt
similarity as the predicted token embeddings are pushed closer to the editable
region with Lreg and LID.

5 Discussion

Conclusion. We present a novel framework to condition T2I diffusion models on
W+ space of StyleGAN2 models for fine-grained attribute control. Specifically,
we learn a latent mapper that projects the latent codes from W+ to the input
token embedding space of the T2I model learned with denoising, regularization,
and identity preservation losses. This framework provides a natural way to embed
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a real face image by obtaining its latent code using the GAN encoders model.
The embedded face can then be edited in two manners - coarse text-based editing
and fine-grained attribute editing by latent manipulation in W+.
Limitations. The primary limitation is that the encoder-based inversion in W+
is loose on some information hence we need to perform test time fine-tuning for
a few iterations to recover identity similar to pivotal tuning. Additionally, the
current approach utilizes multi-diffusion for composing multiple persons which
requires multiple diffusion processes. Effectively composing more than two indi-
viduals with consistent identities proves challenging within the current method
and is an interesting future direction to explore.
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Fig. 13: Additional results for single subject personalization. Our method
achieves excellent realism and text alignment with the prompts.
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Fig. 14: Additional results for Multi-subject personalization. Our method pre-
serves subject identity and follows the text prompt during generation.
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Ethics statement. We propose a face personalization method that might be
useful for fake news generation as it enables the generation of persons in novel
contexts. However, this issue is not limited to this work as it exists in several
personalization approaches [11,51] and generative models [36]. Nonetheless, re-
cent works [21] have leveraged the power of the same personalization approaches
for removing concepts or biases from T2I models.
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