HinglishEval: Evaluating the Effectiveness of
Code-generation Models on Hinglish Prompts

Mrigank Pawagil0009—0002-6169—4766] A piyydh Guptal0009—0008—3188-4634]

Siddharth Reddy Roua[0009—0008—6538—8372]7 and
Kintan Sahg[0009—0005—0897—5237]

Indian Institute of Science, Bengaluru, Karnataka, India
{mrigankp,anirudhgupta,siddharthrr,kintansaha}@iisc.ac.in

Abstract. Code-generation Models are Large Language Models (LLMs)
that are fine-tuned to generate code from natural-language prompts.
Prior work shows that such models can democratize programming by
allowing novice programmers to generate accurate code for simple cod-
ing tasks by providing clear English-language prompts. In this paper, we
explore whether this democratization can extend to novice programmers
who lack proficiency in English but are able to craft clear prompts in
another language. Specifically, we consider prompts in Hinglish, a mix-
ture of Hindi and English that many students in India are comfortable
with. We make two contributions. First, we propose a semi-automated
technique to translate English prompts into Hinglish, and we use this
technique to create HinglishEval: a Hinglish translation of the widely-
used code-generation benchmark HUMANEVAL. Second, we compare the
performance of several popular open- and closed-source code-generation
models on Hinglish and English prompts. Our findings suggest that al-
though code-generation models are generally more effective at generating
accurate code for English prompts, their efficacy with Hinglish prompts
is promising.

Keywords: Large Language Models - Native Language Speakers -
Novice Programmers

1 Introduction

In the evolving landscape of Generative Al, software development has been sig-
nificantly influenced by the usage of Large Language Models (LLMs) such as
GPT [10], Gemini [@], Llama [81], MistralAl [I5], and Codegen [26]. Software de-
velopers are rapidly adopting Al coding assistants and have been seen to improve
programmer efficiency [B0, 27]. The structure of the prompt provided to these
models plays a crucial role in the quality of the generated code [2&]. Most models
exhibit a high proficiency in understanding English, as their training datasets
predominantly consist of English text [23]. Thus there is a significant gap in the
performances of LLMs between using English and other languages [g].
However, for non-native English-speaking (NNES) users, particularly in In-
dia, there is a demand to prompt these models in a more familiar language, such

2 Pawagi et al.

as Hinglish. Hinglish is a blend of Hindi and English that is often used in techni-
cal contexts where important terminology may not have natural Hindi transla-
tions. It is marked by the frequent use of English words in sentences with usual
Hindi grammar. This linguistic mix is not unique to Hindi. Similar blends exist
for other languages as well, like Spanglish (Spanish and English) and Chinglish
(Chinese and English). The prevalence of English in technical literature and dis-
course leads to a natural integration of English terms in conversations across
various languages, resulting in these hybrid language forms.

Since technical documentation is primarily available in English, NNES novice
programmers find it challenging to adequately explain their queries while prompt-
ing LLMs for programming tasks like code generation, debugging, or code expla-
nation [3]. Moreover, these programmers are also prone to misinterpreting LLM
responses in a non-native language such as English. Addressing this language
barrier by allowing novice programmers to prompt in their native languages
can enhance both their learning experience as well the quality of their work on
programming tasks.

To evaluate the performance of LLMs for code generation tasks, Chen et
al. [9] proposed the pass@k metric to estimate whether at least one of the k LLM-
generated solutions for a given prompt is “correct”. In this context, a “correct”
solution is one that passes all the test cases. We will utilize this metric® to
evaluate LLMs on code generation from prompts in Hinglish. We will focus on
prompts written in the Latin script since this is the most natural way of typing
Hinglish.

2 Background

Compatibility with native languages is important for increasing access to Com-
puter Science education. Several recent studies have demonstrated that LLMs
can help close this gap [I7, 2, [0, 24]. These models have become ubiquitous in
recent times for their natural language and technical capabilities including code
generation [06, 21, 29, B3].

oy ety A, M

2.1 Native Languages in the Classroom

Previous studies have shown that the use of native languages in educational set-
tings is crucial for effective learning [2, 3, B]. For example, 122 Indian languages
were recognized by the national census in 2011 [I9]. Yet, technical communica-
tion often takes place in English or its blends with regional languages. Writing
prompts in English can be challenging for NNES novice programmers who are
more comfortable with Hinglish or other such blends with Enlish. By support-
ing diverse languages, LLMs can eliminate the need for extensive translation of
educational material and technical literature, by acting as an interface between
such content and NNES students.

! In this paper, we will consider k = 1.

HinglishEval 3

2.2 Large Language Models on Native Language Prompts

Recent work suggests that LLMs have the ability to understand and respond to
queries in different languages [35, 38, 87, 25, [[8]. However, these capabilities are
limited to only a few languages. More linguistically diverse datasets are therefore
required to train LLMs in adequately comprehending queries in other languages.
Our work focuses on the code-generation abilities of LLMs and indicates that
the performance of LLMs when prompted in Hinglish is significantly lower than
when prompted in English. This suggests that it is still challenging for LLMs to
understand problems specified in regional languages.

2.3 Related Work

The rise of LLMs has revolutionized the field of natural language processing.
Their code generation and code explanation abilities |8, 29] have impacted
several aspects of CS education, especially introductory programming courses [2,
24]. The multilingual abilities of these models [3R, 08| have shown promise in
helping narrow the gap in access to technology for NNES users. In particular,
they have been shown to help NNES programming students [i2, [13].

Previous work on evaluating LLMs for CS education has shown the utility
of LLMs for both students as well as instructors [@, 24, [7]. In general, several
benchmarks have been proposed to evaluate the programming capabilities of
LLMs in various aspects of software engineering [9, B, BG, &, 22, (4, 20]. Our
work builds upon previous work by developing a benchmark for evaluating code-
generation by LLMs from prompts in a native language like Hinglish.

3 Approach

3.1 Creating a Benchmark

Our study builds upon the HUMANEVAL dataset [d] which contains basic pro-
gramming exercises for evaluating the code generation capabilities of LLMs. Each
exercise in HUMANEVAL consists of a prompt, a set of test cases, and a ground
truth solution. The prompt is an incomplete Python function definition consist-
ing of a function header along with a docstring. The docstring is a comment
that contains a purpose statement for the function, and optionally some test
cases called doctests. We translate these purpose statements to Hinglish to cre-
ate our benchmarking dataset. This translation is performed semi-automatically
as described in the following sections.

Generating base translation. We extract the docstring from each prompt
and provide one-shot prompts to GPT-4 to translate them to Hinglish, as illus-
trated in Figure M. This provides us base translations which can then be man-
ually verified and corrected. We adopt this approach based on previous work
demonstrating that human-ATI collaboration increases the efficiency and quality
of translation [34].

4 Pawagi et al.

System: You are a translator fluent in both Hindi and English. Today, you
will convert docstrings of Python functions from English to Hinglish, which
is a conversational form of Hindi in which we use English for technical words
related to syntax or code, programming concepts, and mathematics. Note that
all text must be in the Roman script, like in the example.

User:

Given a positive integer n, return the product of the odd digits.
Return O if all digits are even. For example:

digits(1) == 1

digits(4) == 0

digits(235) == 15

Assistant:

Diye gaye positive integer n ke odd digits ka product return karo.
Agar saare digits even ho to O return karo. Jaise ki:

digits(1) == 1

digits(4) == 0

digits(235) == 15

User: <docstring>

\ v

Fig.1: Our prompt to GPT-4 for translating docstrings. We provide a persona
through our system prompt, and then provide an example for the translation.
We replace <docstring> by the docstring to be translated.

Manual verification and correction of translations. A group of seven un-
dergraduate students who can natively speak Hindi manually verified the base
translations. Each base translation was verified by one student. In case of an
incorrect translation, the student opened a pull request with the proposed cor-
rection. Pull request were reviewed by one or two other students and merged
only once a consensus was reached. We will refer to the final dataset of Hinglish
prompts thus created, together with the test cases and ground truth solutions
from HUMANEVAL, as HINGLISHEVAL.

Besides grammatical correctness, these corrections usually focused on making
the translations idiomatic to native speakers. In total, 74 base translations were
manually corrected with an average edit distance of 24.76 characters. Listings
M, B, and B respectively illustrate an original docstring in HUMANEVAL, its base
translation, and its manually corrected and verified translation.

3.2 Evaluation

Experimental setup. We prompted each model under evaluation with both
the English prompts in HUMANEVAL as well as the Hinglish prompts in HINGLI-

HinglishEval 5

Write a function that accepts a list of strings.

The list contains different words. Return the word with maximum
number of unique characters. If multiple strings have maximum number
of unique characters, return the one which comes first in
lexicographical order.

Listing 1: Docstring in problem 158 of HUMANEVAL.

Ek function likho jo strings ki 1list ko accept karta hai.

List mein alag alag shabd hote hain. Unique characters ki maximum
number wala shabd return karo. Agar multiple strings mein maximum
number of unique characters ho, toh lexicographical order mein
sabse pehle aane wala shabd return karo.

Listing 2: Base translation for docstring in problem 158 of HUMANEVAL. The
highlighted text was removed during manual correction.

Ek function likho jo strings ki ek list accept karta hai.

List mein alag alag words hain. Sabse zyada unique characters wala
word return karo. Agar multiple strings mein maximum number of
unique characters ho, toh lexicographical order mein sabse pehle a
ane wala word return karo.

Listing 3: Manually corrected translation of docstring in problem 158 of Hu-
MANEVAL. The highlighted text was added during manual correction.

SHEVAL. We evaluated the generated code for each prompt by testing its equiva-
lence with the corresponding ground truth solution over the provided test cases.
We configured the models to greedy decoding (0 temperature) and set the max-
imum number of output tokens to 512. We found that no model produced code
beyond 512 tokens for any problem. At 0 temperature, models behave determin-
istically and so we only generate one output for every prompt.

System prompt. We provided a system prompt to each model under evalua-
tion in order to provide a persona to the model along with relevant instructions.
This system prompt is shown in Listing A. The system prompt was not provided
to models that do not offer such a facility. The main prompt to the models was
prefixed by the following: “Can you complete the following Python function?

6 Pawagi et al.

Retain the function header and docstring.” These prompts were provided in the
appropriate format depending on the model under evaluation.

You are an experienced Python programmer. Complete the Python
functions from the given docstrings. Do NOT write anything except
the function definition. Avoid print and input statements.

Listing 4: System prompt for code generation.

4 Results

4.1 Performance Metrics

Pass@1. For each model, M under evaluation, we calculate the pass@1 values
on HUMANEVAL (denoted by E) and HINGLISHEVAL (denoted by H), denoted
respectively by Py (M, E) and P,(M, H). Note that Py (M, D) is the fraction of
problems in dataset D € {E, H} for which M generated correct code. Under our
evaluation, the generated code for a given problem is correct if it is equivalent to
the corresponding ground truth solution over the provided test cases. Further, we
define Aj; to be the difference in the pass@1 values of M between HUMANEVAL
and HINGLISHEVAL, i.e., Ay, = P1(M, E) — P1(M, H). Table O lists the values
of P,(M,E), P(M,H) and Ay for various models. Figure @ shows the ratio of
Py (M, E) and P,(M, H) values for each model.

4.0 4 L[]

3.5

Relative Pass@1
& g

g
=}
L

[]

154

o o .
e 0 °
° °
1.0 ° e © o ° e o o o o
> o > Q 2 2 g Q 5) O o > o v v > v > D >
& PN 3 oo oA Y © S &S Y A v
P AN & 7 RS o o o N IS s «@ &
SR AN ¥ &L R ST S S ¥ S
o & &L g (L WSUPN. N G A KN : S ¥ S
& ¥ & & 90 F S D E LS E
¢ M A FSEELEL ST TS TS
o3 e © &) R’ ob oy
<& C
Model

Fig. 2: Relative Pass@1 scores, i.e., Pi(M, E)/P;(M, H) values.

HinglishEval 7

Model Family | Model (M) P, (M,E) P (M, H) An
Phi-3 Medium-4k Instruct | 73.78 59.76 14.02
GPT 3.5-Turbo 72.56 58.54 14.02
4 71.95 79.27 -7.32
Llama 3 70B 71.95 65.85 6.10
Mistral 7B-v0.3 39.63 28.66 10.98
7B-v0.2 31.71 23.17 8.54
7B-v0.1 27.44 25.61 1.83
Gemma 7B 13.41 14.02 -0.61
2B 10.98 10.98 0.00
CodeGen 6B-Mono 15.24 15.24 0.00
6B-Multi 10.37 8.54 1.83
2B-Mono 9.76 9.76 0.00
2B-Multi 7.32 1.83 5.49
350M-Multi 5.49 3.05 2.44
2B-NL 4.88 2.44 2.44
6B-NL 4.88 3.66 1.22
350M-Multi 3.05 3.05 0.00
350M-NL 0.00 0.00 0.00
PolyCoder 2.7B 1.83 1.83 0.00
160M 0.00 0.00 0.00
0.4B 0.00 0.00 0.00

Table 1: Pass@1 scores of different models on the HUMANEVAL and the HINGLI-
SHEVAL datasets.

Item Response Theory. Item Response Theory (IRT) [i0] is a psychometric
model that utilizes statistical data to explain the relationship between intrinsic
traits and observed outcomes. IRT has been employed to examine the useful-
ness of individual questions in standardized tests for human participants [32].
We utilize IRT to compare the relative performance of different models while
accounting for each problem’s difficulty and ability to discriminate models. This
relative performance is called latency®.

We assume that the difficulty of a problem specified in English (in HUMANEVAL)
is preserved during translation to Hinglish (in HINGLISHEVAL) and consider both
versions to be the same problem. Therefore for every model M, we consider two
subjects E(M) and H (M) which take the same problems in English and Hinglish
respectively. We independently compare these two subjects from every model in

2 Note that throughout our text, we will exclusively use this term in the context
of IRT, and it should not be confused with the same term for the delay between
prompting LLMs and receiving their output.

8 Pawagi et al.

the same IRT evaluation. We will denote the latency of a subject, X by Lx. Note
that a higher Lx indicates better performance of X relative to other subjects in
the evaluation.

We implement IRT using the 2-Parameter Logistic (2PL) model, which computes
the latencies of the subjects being evaluated using the difficulty and discrimina-
tion values of each problem. We did not use the three-parameter model which also
accounts for a guessing parameter for each subject while computing latencies.
This parameter captures the ability of the subjects to correctly guess answers
to problems. Since we executed models with greedy decoding, the responses of
the subjects were deterministic. Therefore, we did not include this parameter.
Table B lists the latencies of all the subjects in our evaluation. Broadly, it can
be observed that most models understand English prompts better than Hinglish
prompts, even for the same problems.

Model Family | Model (M) Lga L
Phi-3 Medium-4k instruct | 0.800 1.599
GPT 3.5-Turbo 0.800 0.716
4 0.800 0.793
Llama 3 70B 0.801 0.800
Mistral 7B-v0.3 -0.781 -0.800
7B-v0.2 -0.800 -0.816
7B-v0.1 -0.800 -0.800
Gemma 7B -1.66 -1.61
2B -2.36 -2.39
CodeGen 6B-Mono -1.600 -1.612
6B-Multi -2.384 -2.426
2B-Mono -2.397 -2.391
2B-Multi -2.576 -3.955
350M-Multi -3.870 -3.827
2B-NL -3.414 -3.914
6B-NL -3.139 -3.584
350M-Multi -3.247 -3.827
350M-NL -3.985 -3.985
PolyCoder 2.7B -3.888 -3.957
160M -3.985 -3.985
0.4B -3.985 -3.985

Table 2: IRT latencies of different subjects.

HinglishEval 9

4.2 Analysis

The positive Ap; values for all LLMs except GPT-4 and Gemma-7B indicate
that these models perform poorly when prompted in Hinglish. A similar trend is
seen by comparing the IRT latencies of the English and Hinglish subjects derived
from each model. However, this gap is small and our evaluation demonstrates
that both closed- and open-sourced models are promising in their utility for
NNES novice programmers. We found that many models produced code with
logical errors when prompted in Hinglish, even though they generated correct
code from English prompts. This suggests a lack of comprehension of problem
statements by these models when problems are specified in Hinglish. Listings B,
@ and B illustrate a few such examples for problems with high difficulty values.

def words_string(s):
nunn

You will be given a string of words separated by commas or spaces.
— Your task is to split the string into words and return an array
— of the words...

mnimn

words = s.split(', ')

words = [word.strip() for word in words]

return words

Listing 5: GPT-3.5-Turbo’s response for the Hinglish version of problem 101 in
HUuMANEVAL. The bug in this response can be fixed by changing the highlighted
text tos.replace(',', ' ').split(). Note that we have replaced the Hinglish
docstring with part of its original English version for the purpose of illustration.

def generate_integers(a, b):
mmn

Given two positive integers a and b, return the even digits between

— @ and b, in ascending order...
mnimn

return [i for i in range(min(a, b), max(a, b) + 1) if i % 2 == 0]

Listing 6: GPT-4’s response for the Hinglish version of problem 163 in HU-
MANEVAL. The bug in this response can be fixed by changing the highlighted
text toi % 2 == 0 and 0 <= i <= 9. Note that we have replaced the Hinglish
docstring with part of its original English version for the purpose of illustration.

10 Pawagi et al.

def match_parens(lst):

nmunn

You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only. Your job is to
check if it is possible to concatenate the two strings in some
order, that the resulting string will be good. A string S is
considered to be good if and only <if all parentheses in S are
balanced. ..

L A A

1

def is_balanced(s):

n

return 'Yes' if is_balanced(1st[0] + 1st[1]) else 'No'

Listing 7: Mistral-7B-v0.3’s response for the Hinglish version of problem 119
in HUMANEVAL. The bug in this response can be fixed by changing the high-
lighted text to is_balanced(lst[0] + 1st[1]) or is_balanced(lst[1] +
1st[0]). Note that we have replaced the Hinglish docstring with part of its
original English version for the purpose of illustration.

5 Conclusion

This study evaluates the code-generation abilities of LLMs from prompts in
regional languages. This provides a perspective on their usefulness for NNES
users, particularly novice programmers who may use these models for assis-
tance in programming tasks. We present a benchmark to track the performance
of newer and upcoming language models on such tasks. One immediate direc-
tion for future work is to expand this benchmark to other regional languages
and their blends with English. Further, our benchmark evaluates models on
a relatively small number of Python code generation tasks. Future work can
extend our approach to benchmarks involving other programming languages,
other aspects of software engineering like code comprehension and debugging,
or harder programming tasks. User studies involving students and instructors
should also be conducted to better understand their interaction with LLMs
in regional languages. Further studies can also explore the effect of different
prompting strategies on the performance of LLMs with regional languages. Our
benchmark, HINGLISHEVAL, all scripts and generated code-samples are publicly
available at github.com/mrigankpawagi/HinglishEval to enable reproducibil-
ity and further work in this direction.

Acknowledgements

We thank the anonymous reviewers and Dr. Viraj Kumar for their valuable com-
ments and suggestions for improving this paper, the Kotak-1ISc AI-ML Centre
for supporting this work, and Om Prakash Choudhary, Pratham Gupta and
Adithya K Anil for their help in validating the translations.

https://github.com/mrigankpawagi/HinglishEval

HinglishEval 11

References
[1] Josh Achiam et al. GPT-4 Technical Report. 2023. arXiv: 2303087 74.
[2] Vibhor Agarwal et al. "Which LLM should I use?": Evaluating LLMs for
tasks performed by Undergraduate Computer Science Students in India.
2024. arXiv: 2407 01687.
[3] Suad Alaofi and Sedn Russell. “Computer Terminology Test for Non-native
English Speaking CS1 Students”. In: ACE. 2022.
[4] Rohan Anil et al. Gemini: A Family of Highly Capable Multimodal Models.
2023. arXiv: 231211805,
[5] Ben Athiwaratkun et al. “Multi-lingual Evaluation of Code Generation
Models”. In: International Conference on Learning Representations. 2023.
[6] Jacob Austin et al. Program Synthesis with Large Language Models. 2021.
arXiv: 210807737,
[7] Rishabh Balse et al. “Evaluating the Quality of LLM-Generated Explana-
tions for Logical Errors in CS1 Student Programs”. In: COMPUTE. 2023.
[8] Yejin Bang et al. “A Multitask, Multilingual, Multimodal Evaluation of
ChatGPT on Reasoning, Hallucination, and Interactivity”. In: IJCNLP-
AACL. 2023.
[9] Mark Chen et al. Evaluating Large Language Models Trained on Code.
2021. arXiv: 2107 03374.
[10] Yunxiao Chen et al. Item Response Theory-A Statistical Framework for
FEducational and Psychological Measurement. 2021. arXiv: 2108 08604,
[11] Hagit Gabbay and Anat Cohen. “Combining LLM-Generated and Test-
Based Feedback in a MOOC for Programming”. In: Learning @ Scale.
2024.
[12] Philip J Guo. “Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities”. In: Conference on Hu-
man Factors in Computing Systems. 2018.
[13] Carmen Nayeli Guzman, Anne Xu, and Adalbert Gerald Soosai Raj. “Ex-
periences of Non-Native English Speakers Learning Computer Science in
a US University”. In: SIGCSE Technical Symposium. 2021.
[14] Dan Hendrycks et al. “Measuring Coding Challenge Competence With
APPS”. In: Neural Information Processing Systems. 2021.
[15] Albert Q Jiang et al. Mistral 7B. 2023. arXiv: 231006825,
[16] Juyong Jiang et al. A Survey on Large Language Models for Code Gener-
ation. 2024. arXiv: 2406 0015,
[17] Majeed Kazemitabaar et al. “How Novices Use LLM-based Code Genera-
tors to Solve CS1 Coding Tasks in a Self-Paced Learning Environment”.
In: International Conference on Computing Education Research. 2023.
[18] Aditi Khandelwal et al. “Do Moral Judgment and Reasoning Capability
of LLMs Change with Language? A Study using the Multilingual Defining
Issues Test”. In: Conference of the European Chapter of the Association
for Computational Linguistics. 2024.
[19] Language Census Data. URL: https : // language . census . gov . in/

showLanguageCensusData.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.01687
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2108.08604
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2406.00515
https://language.census.gov.in/showLanguageCensusData
https://language.census.gov.in/showLanguageCensusData

Pawagi et al.

Yujia Li et al. “Competition-Level Code Generation with AlphaCode”. In:
Science (2022).

Fang Liu et al. Ezploring and Evaluating Hallucinations in LLM-Powered
Code Generation. 2024. arXiv: 2404 -00971.

Jiawei Liu et al. “Is Your Code Generated by ChatGPT Really Correct?
Rigorous Evaluation of Large Language Models for Code Generation”. In:
Neural Information Processing Systems. 2024.

Yang Liu et al. Datasets for Large Language Models: A Comprehensive
Wenhan Lyu et al. “Evaluating the Effectiveness of LLMs in Introductory
Computer Science Education: A Semester-Long Field Study”. In: Learning
@ Scale. 2024.

Junho Myung et al. BLEnD: A Benchmark for LLMs on Everyday Knowl-
Erik Nijkamp et al. A Conversational Paradigm for Program Synthesis.
2022. arXiv: 220313474,

FEirini Kalliamvakou. Research: quantifying GitHub Copilots impact on de-
veloper productivity and happiness. 2022. URL: https://github.blog/
news-insights/research/research-quantifying-github-copilots—
impact-on-developer-productivity-and-happiness/.

Laria Reynolds and Kyle McDonell. “Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm”. In: Conference on Human
Factors in Computing Systems. 2021.

Claudio Spiess et al. Calibration and Correctness of Language Models for
Code. 2024. arXiv: 402 02047,

The world’s most widely adopted Al developer tool. 2024. URL: https :
//github.com/features/copilot.

Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat

Understanding Item Analyses. 2024. URL: https://www.washington.edu/
assessment/scanning-scoring/scoring/reports/item-analysis.
Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed. Enhancing Trust
in LLM-Generated Code Summaries with Calibrated Confidence Scores.
Wang, Lan. “The Impacts and Challenges of Artificial Intelligence Trans-
lation Tool on Translation Professionals”. In: SHS Web Conf. (2023).
Zheng Xin Yong et al. “Prompting Multilingual Large Language Models to
Generate Code-Mixed Texts: The Case of South East Asian Languages”.
In: Computational Approaches to Linguistic Code-Switching. 2023.

Hao Yu et al. “CoderEval: A Benchmark of Pragmatic Code Generation
with Generative Pre-trained Models”. In: ICSE. 2024.

Jun Zhao et al. LLaMA Beyond English: An Empirical Study on Language
Capability Transfer. 2024. arXiv: 240101055,

Yiran Zhao et al. How do Large Language Models Handle Multilingualism?

https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2402.18041
https://arxiv.org/abs/2406.09948
https://arxiv.org/abs/2203.13474
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://arxiv.org/abs/2402.02047
https://github.com/features/copilot
https://github.com/features/copilot
https://arxiv.org/abs/2307.09288
https://www.washington.edu/assessment/scanning-scoring/scoring/reports/item-analysis
https://www.washington.edu/assessment/scanning-scoring/scoring/reports/item-analysis
https://arxiv.org/abs/2404.19318
https://arxiv.org/abs/2401.01055
https://arxiv.org/abs/2402.18815

	HinglishEval: Evaluating the Effectiveness of Code-generation Models on Hinglish Prompts

