
SKD-Net: Spectral-based Knowledge Distillation in Low-Light Thermal
Imagery for robotic perception

Aniruddh Sikdar*1, Jayant Teotia*2 and Suresh Sundaram3

Abstract— Enhancing the generalization capacity for seman-
tic segmentation of aerial perception systems for safety-critical
applications is vital, especially for environments with low-light
and adverse conditions. Multi-spectral fusion techniques aim to
maintain the merits of electro-optical (EO) and infrared (IR)
images, e.g., retaining low-level features and capturing detailed
textures from both modalities. However, these techniques en-
counter limitations when faced with scenarios involving missing
modalities, especially during inference when only IR images
are available. In this paper, we propose a novel spectral-
based knowledge distillation architecture known as SKD-Net
to improve the performance of deep learning models for
missing modality scenarios for semantic segmentation tasks.
In this architecture, we make use of Gated Spectral Unit to
combine information from both modalities. SKD-Net aims to
extract valuable semantic information from EO images while
preserving spectral knowledge from the IR images within the
feature space. The model retains the style information in
the shallow layers while simultaneously fusing the high-level
semantic context obtained from EO and IR images to improve
the feature generation capacity when dealing with only IR
images during inference. SKD-Net outperforms state-of-the-art
multi-modal fusion and distillation models by 2.8% on average
in scenarios with missing modalities when using only IR data
during inference in two public benchmarking datasets. This
performance increase is achieved without additional computa-
tional costs compared to the baseline segmentation models.

I. INTRODUCTION

Aerial perceptual robustness plays an important role in
enabling UAVs to operate effectively across diverse envi-
ronments, including those with harsh conditions and low
illumination. This is valuable while conducting inspections
[32], searches [33], [35], and surveillance operations [34] in
challenging environments using autonomous drones. A lot
of research focused on achieving high segmentation perfor-
mance, but a gap remains for enhancing generalizing capabil-
ities, particularly in adverse environmental conditions. The
majority of vision models have been developed with a focus
on cameras operating in the visible spectrum [36], primarily
because of the ready availability of large-scale RGB datasets
[16],[17]. However, these models often experience a drop
in performance when operating in low-light conditions and
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adverse environments. Since IR waves carry distinct spectral
information and have the capability to penetrate dust and
smoke, IR cameras can be used in challenging environments
with limited visibility and low-light conditions. Hence, an
increase in segmentation performance can be achieved in
adverse conditions.

Fig. 1. Proposed knowledge distillation framework encourages SKD-Net
to transfer semantic knowledge between optical and IR modalities.

Despite the utility of IR cameras, the images generated
contain less semantic information in comparison to EO
images, resulting in significant drops in the performance of
deep learning models for the dense prediction task. This leads
to the requirement for multi-sensor fusion approaches that
combine both EO and IR images addressing the limitations
of individual modalities. One popular approach involves
utilizing multi-spectral fusion strategies that incorporate EO
and IR images. These methods have garnered attention,
particularly with the accessibility of co-registered EO-IR
datasets [1][2][18]. Multi-spectral networks can be trained
on paired RGB-thermal image datasets for feature extraction
and image fusion, like Cross-modality transformer [19],
GAFF [20], and CDDFuse [21]. These fusion approaches
improve the overall urban semantic segmentation perfor-
mance by combining both modalities, but they often rely
on co-registered images during both, training and testing.
There are not many publicly available coregistered datasets
and collecting a custom dataset can be quite costly [22].
Additionally, when data from one of the sensors becomes
corrupted, it can substantially degrade the performance of
these models. In practical application scenarios, a major
challenge is the unavailability of all data sources consistently.
This is commonly called the ”missing modality problem”
[24].
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When using the multisensor information to train an ex-
isting model, typical approaches rely on two key methods:
knowledge transfer [23] and knowledge distillation [25]. The
absence of a knowledge retention mechanism can result in
the loss of information during the transfer process [25].
Knowledge distillation [9] can be used to distill the knowl-
edge, but directly matching these images and the distributions
of modality-specific features with large domain gaps can
result in negative transfer, primarily due to the forced feature
alignment.

This paper proposes a novel spectral-based knowledge
distillation architecture known as SKD-Net to address the
missing modality scenario as shown in Fig. 1. In contrast
to methods that rely on image fusion, our approach centers
on the fusion of image modalities at the feature map level.
The aim is to extract the spectral knowledge pertaining to
the same object across different modalities and to learn the
domain invariant and domain-specific feature representation
from cross-modal data, especially the semantic context of
the objects. A novel module called Gated Spectral Fusion is
proposed to combine the spectral information from multiple
imaging modalities for efficient knowledge distillation. The
main contributions are as follows:

• A novel spectral-based knowledge distillation architec-
ture known as SKD-Net is proposed for the missing
modality scenario. SKD-Net helps in narrowing the
segmentation performance difference between IR and
EO images.

• The proposed SKD-Net consists of shared encoders for
both EO and IR, trained using contrastive loss for intra-
class compactness while retaining the style information.
The model also distills multi-level semantic features of
optical images to fuse the rich semantic information.

• A feature reuse strategy is adopted to avoid additional
computational costs. This results in the same compu-
tation complexity as the baseline segmentation model,
with increased performance for IR images.

• The proposed SKD-Net model outperforms other state-
of-the-art multi-modal fusion models by an average of
2.8% on two publicly available benchmarking datasets.

II. RELATED WORK

A. Knowledge Distillation

Knowledge distillation [9] originally aimed to transfer
knowledge from a complex network to a smaller one by
reducing the classification gap using soft targets. Subse-
quently, the pixel-level knowledge distillation strategy has
gained significant attention for training compact models in
the context of semantic segmentation tasks. Balancing the
trade-off between high accuracy and high speed remains a
persistent challenge in the field of semantic image segmen-
tation. A knowledge distillation framework named double
similarity distillation (DSD) has been introduced to enhance
classification accuracy by capturing similarity knowledge in
both pixel and category dimensions. Additionally, a Pix-
elwise Similarity Distillation (PSD) module is presented

to capture finer spatial dependencies, as proposed in [10].
Distillation techniques have also been explored to address
the challenge of handling missing modalities [11], [12].
DisOptNet [3] introduced a distillation technique aimed at
transferring semantic knowledge from the optical to SAR
(Synthetic Aperture Radar) modality. This approach is de-
signed to enhance segmentation performance, particularly
in scenarios where one modality is missing, as applied in
weather-independent urban mapping applications.

B. Contrastive Learning

Contrastive learning has been widely used for the purpose
of learning representations in the absence of labeled data
[26], and it has demonstrated significant superiority over
other pretext task-based options. Recent works [27] show
the use of label information for image-level pretraining. Con-
trastive learning aims to facilitate the learning of discrimina-
tive feature representations by distinguishing between similar
feature pairs and dissimilar (negative) pairs. The positive pair
sampling strategy involves applying strong perturbations to
generate diverse views [28]. Negative pairs, on the other
hand, can be generated through random sampling or more
advanced techniques like negative mining [29]. PiPa [15]
has been proposed for unsupervised domain adaptation to
facilitate intra-image pixel-wise correlations and patch-wise
semantic consistency against different contexts to promote
intraclass compactness and inter-class separability. A pixel-
wise training strategy utilizing contrastive learning has been
proposed [30] for an inter-image, pixel-to-pixel paradigm
that uses the global semantics of labeled pixels for supervised
learning. The correlation between individual pixels and pixel
and semantic regions is optimized. One of the pioneering
works using contrastive learning for knowledge distillation
[31], used contrastive-based objective. This objective func-
tion encourages the teacher and student models to map the
same input to similar representations.

C. Multi-modal Image Fusion

Deep learning has been used for a variety of vision
applications, with an increasing focus on learning for dif-
ferent modalities [37][38]. Multi-modal fusion techniques
fuse the data from different modalities to capture cross-
modality features. The Cross-modality transformer network
[19] is designed to acquire long-range dependencies and use
global contextual information during the feature extraction
phase. In CDDFuse [21], Restormer blocks are employed
to extract shallow features across different modalities, and
a dual-branch Transformer is used to incorporate long-range
attention mechanisms for handling low-frequency global fea-
tures. Additionally, Invertible Neural Network (INN) blocks
are incorporated to extract high-frequency local information.
[25] showed that the distinction among deep models trained
on data from diverse modalities can be attributed to the
parameter distribution of sensor-invariant and sensor-specific
operations. A prototype network was introduced to acquire
meta-sensory representation by modeling the mechanism to
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retain knowledge using an alignment operation. Channel-
Exchanging-Network (CEN) [4] proposed a dynamic swap-
ping of channels between sub-networks as a mechanism
for fusing information from various modalities. The process
is self-directed and relies on assessing the importance of
individual channels by evaluating the magnitude of the
Batch-Normalization (BN) scaling factor during the training
process.

III. SKD-NET: SPECTRAL-BASED KNOWLEDGE
DISTILLATION NETWORK

A. Problem Formulation

Thermal imagery holds significance in low-light scenar-
ios, however, deep-learning models experience a drop in
performance when trained on IR images, mainly because
they contain fewer semantic information than EO images.
The aim is to enhance the model’s representation ability
across various modalities during training and to maintain
this knowledge when performing inference with only one
modality. Let {XO, XI} = {(XO

1 , XI
1 ), ..., (XO

n , XI
n)} de-

note the co-registered EO-IR image pairs from dataset D,
with their corresponding pixel-wise labels Y = {Y1, ..Yn}.
Images from both modalities, i.e., {XO, XI}, are passed
as input to the semantic segmentation model fθ during the
training process, where θ represents the learnable parameters.
However, only the IR images, represented as XI , are passed
to the model during inference. Spectral-based knowledge
distillation is proposed using SKD-Net to acquire domain-
invariant features from both modalities.

B. SKD-Net Architecture

Semantic segmentation networks commonly employ an
encoder-decoder architecture and can be denoted as fθ,
where θ represents the learnable parameters. The ith encod-
ing stage is denoted as fi(.), and maps the features Fi−1 to
Fi, and d(.) denotes the decoder layers, as shown in Fig.
2. Since the shallow layers in CNNs retain the style-related
information by capturing local structures [13], the first three
encoder blocks from the backbones of fθ are shared and
are represented as F3. The features become more domain-
specific in the later layers of the model. Consequently,
these layers are retained individually to preserve semantic
information primarily derived from EO images. Hence, F3

is passed to the EO and IR branches to capture domain-
specific knowledge. The outputs of the decoder for both the
EO and IR branches are represented as FI and FO, and are
passed to the Gated Spectral Unit (GSU) block as shown in
Fig. 2 (b).

GSU is proposed to enforce spectral learning, inspired
by gated multimodal units [14]. The main idea for the
multiplicative gates is to determine which input has a greater
impact on generating the correct output for a rich multimodal
representation. This approach avoids manual adjustments
and enables the model to learn from the training data
independently. It helps to learn the spectral properties from
the EO and IR branches and learns to decide the influence of
different units’ activation using gates. Fig. 2 (b) depicts the

structure of a GSU. The output of the EO and IR branches
and their summation are passed to the GSU block. These
outputs are passed through convolution layers and then with
the tanh activation function, as given below,

h1 = tanh(W1 ∗ FI) (1)

h2 = tanh(W2 ∗ FO) (2)

h3 = tanh(W3 ∗ (FI + FO)) (3)

where, W1, W2, W3 represents the convolution weights. For
each branch, gate neuron Z is computed, given by,

Z1 = σ(W1 ⊗ [FI , FO, FI + FO]) (4)

where [·, ·] denotes the concatenation operator and σ denotes
sigmoid operation. The final output predictions of the fusion
block F f is given by,

F f = Z1 ⊗ h1 + Z2 ⊗ h2 + Z3 ⊗ h3 (5)

where ⊗ represents the multiplication operation. SKD-Net
model has three outputs as shown in the figure, two for each
modality, i.e., for optical and IR, and the third output from
the GSU block, given by F f . GSU is used for distillation
only and is removed during inference.

C. Training Scheme

The training process consists primarily of two key steps:
(1) pre-training the baseline DeepLabV3+ segmentation
model on optical images, and (2) training the SKD-Net
model using EO-IR coregistered images while concurrently
distilling optical knowledge from the pre-trained model into
the optical branch of SKD-Net.

1) Training Step 1: The baseline segmentation model is
trained with the optical images with their corresponding la-
bels {XO, Y }, using the LST1(p, y) consisting of contrastive
loss for encoder layers, and segmentation loss to train the
whole model. The segmentation loss Lseg(p, y) consisting
of summation of cross-entropy and dice loss, given by,

Lseg(p, y) = −
∑
i

yilog(pi) + 1−
2
∑

i piyi∑
i yi +

∑
i pi

(6)

where, y and p denote the ground truth labels and the pixel-
wise predictions respectively.

To train the encoder for superior style representation,
contrastive learning LCL is employed in the feature space,
which is taken from the first two layers of the encoder to
improve the intra-domain mining for optical modality. This
involves mapping image pixels into an embedding space
using a projection head hpixel, facilitating discriminative
feature learning. This process aims to bring pixel embeddings
from the same category closer together while pushing pixel
embeddings from different categories farther apart. In doing
so, the model is encouraged to learn correlations between
labeled pixels. Using the pixel-wise labels, pixels belonging
to the same class are treated as positive samples, while
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Fig. 2. Spectral-based knowledge distillation network (SKD-Net) architecture. a) The first three encoder blocks are shared between EO and IR branches.
The output of the decoder block of the two branches is fed into GSU for feature fusion. Pixel-wise contrastive loss is used for features from the four
encoder blocks (two from shared and two from the IR branch). b) Gated Spectral Unit takes three inputs from the EO branch, IR branch, and pixel-wise
addition of the features of the two branches and outputs a single feature map.

those belonging to different classes are considered negative
samples. The pixel-wise contrastive loss is formulated as,

LCL = −
∑

C(i)=C(j)

log
r(ei, ej)∑Np
k=1 r(ei, ej)

(6)

where, ei represents the ith feature map obtained from
the projection head, Np stands for the total number of
pixels, r(.,.) denotes the similarity measure. The similarity is
calculated using the exponential similarity function: r(ei, ej)
= exp(s(ei, ej) / τ ), where s represents the cosine similarity,
and τ is the temperature parameter. A semi-hard example
sampling strategy [15] is adopted, where the negative sam-
ples are retained from the whole training batch, with the top
10% nearest negatives and farthest positives selected for each
anchor sampling.

2) Training Step 2: The SKD-Net architecture is trained,
and distillation from the pre-trained optical model is per-
formed using two distillation loss terms, namely LD1 and
LD2. Using the multi-class pixel-wise predictions obtained
by the pre-trained model denoted as pPO, the distillation loss
LD1 is given by,

LD1(p, p
PO) =

∑
i

pPO
i log

pPO
i

pi
−
∑
i

pPO
i log(pi) (7)

where p represents the predictions made by the EO branch of
SKD-Net. Kullback-Leiber (KL) divergence term along with
the cross-entropy loss is used to generate similar predictions
made by the pre-trained optical branch. Adopting the deep
distillation strategy from DisOptNet [3], the multi-level se-
mantic information is distilled from the EO branch of the
pre-trained model to the EO branch of SKD-Net, using the

mean square error loss, given by,

LD2(F, F
PO) =

∑
i∈{4,5}

∥Fi−FPO
i ∥2+∥Fd−FPO

d ∥2 (8)

which measures the difference between the features of the
last two layers of the encoders and the decoder output. The
joint loss function for training the SKD-Net is given by,

LST2 = Lseg(y, p) +LD1(p, p
PO) +LD2(F, F

PO) +LCL

(9)
where the segmentation loss Lseg is used to optimize the
model’s output from fused segmentation and the IR segmen-
tation head, along with contrastive loss LCL. In the second
training step, the last four features of the encoders are passed
to the projection head and LCL is used to improve the
intra-domain mining for IR modality, which is helpful when
performing inference on IR modality only. During inference,
only the IR branch of SKD-Net is used, which has the same
configuration as DeepLabV3+.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The performance of the proposed SKD-Net is compared
with two existing methods: DisOptNet [3] and Multimodal
Fusion by Channel Exchanging (C.E.N) [4]. During training,
the models are trained using both optical and Infrared (IR)
modalities, however during inference, only IR images are
accessible. This requires the evaluation of these models
in missing modality scenarios. All the models are eval-
uated using two datasets, MSRS [1] and MVSS [2]. To
ensure fair comparisons, the baseline model DeepLabV3+,
and DisOptNet are re-implemented using the same training
strategy as SKD-Net. Additionally, C.E.N is re-implemented
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TABLE I
PERFORMANCE COMPARISON OF IOU (%) OF SKD-NET WITH OTHER

STATE-OF-THE-ART MODELS ON MSRS DATASET.

Method Publication mIoU # of Params
Baseline (VI) 64.33 11.68 M
Baseline (IR) 61.7 11.68 M

DisOptNet TGRS 2022 63.38 11.68 M
C.E.N TPAMI 2022 62.93 99.13 M

SKD-Net 64.67 11.68 M

TABLE II
PERFORMANCE COMPARISON OF IOU (%) OF SKD-NET WITH OTHER

STATE-OF-THE-ART MODELS ON MVSS DATASET.

Method Publication mIoU # of Params
Baseline (VI) 48.55 11.68 M
Baseline (IR) 42.82 11.68 M

DisOptNet TGRS 2022 43.22 11.68 M
C.E.N TPAMI 2022 40.33 99.13 M

SKD-Net 45.53 11.68 M

with the training strategy specified in [4]. The evaluation of
segmentation performance is based on the Intersection over
Union (IoU) metric.

1) Datasets Description: The experiments are conducted
on two semantic segmentation datasets, namely MSRS and
MVSS, which consist of aligned visible and infrared im-
ages. The MSRS dataset [1], comprises 1,444 high-quality
image pairs with a spatial resolution of 480 × 640, each
accompanied by pixel-wise semantic labels. It contains 9
classes, including categories such as color cones, cars, bikes,
and pedestrians. The dataset is randomly partitioned into
training and test samples, with 1083 samples allocated for
training and 361 samples for inference. The MVSS dataset
[2] contains a diverse array of urban scenes, encompassing
both daytime and nighttime conditions, presenting a range of
challenges. It has a total of 1616 samples, with 1004 training
samples, and 612 samples for testing. The image has been
resized to 320x480 as specified in MVSS [2] as the original
images are of dis-similar dimensions. The dataset contains
26 classes, such as cars, buses, motorcycles, poles, buildings,
and pedestrians.

2) Implementation Details: The baseline segmentation
model used is DeepLabV3+ [5] with EfficientNet-B3 [8]
backbone, pre-trained on ImageNet [7]. Data augmentations
for both the training steps include horizontal flips with 50%
probability. In all experiments, the models are trained using
the SDG optimizer, starting with an initial learning rate of 5
× 10−3. A polynomial scheduler decreases the learning rate
after each epoch, a decay factor of (1 - step/total steps)0.9.

TABLE III
ABLATION ANALYSIS WITH SETTING OF SKD-NET.

Method mIoU
Baseline 42.82

DisOptNet 43.22
SKD-Net w/o Contrastive loss 44.50

SKD-Net w/o GSU 45.33
SKD-Net 45.53

The models are trained with a batch size of 8, for 200 epochs.
All experiments are conducted using an NVIDIA Quadro
RTX 5000 GPU.

B. Quantitative Evaluation

Table I and Table II show the segmentation performance
of SKD-Net and other state-of-the-art multimodal fusion
models. Both tables show the performance of the baseline
DeepLabV3+ model for oracle settings, where it is trained
and tested solely on visible (VI) or infrared (IR) data. To
evaluate the performance when one modality is missing, all
other models are trained using pairs of electro-optical (EO)
and infrared (IR) data but are exclusively tested on IR data.
As shown in Table I, SKD-Net exhibits superior performance
for missing modality scenarios for the MSRS dataset. It
demonstrates a 2.97% improvement compared to the baseline
model. Additionally, SKD-Net outperforms DisOptNet by
1.29% and C.E.N. by 1.75%. It also outperforms the baseline
model trained and evaluated exclusively on optical images,
demonstrating the effectiveness of the knowledge distillation
technique of SKD-Net. Table II presents the performance
results for the missing modality scenario on the MVSS
dataset. Since only the baseline DeepLabV3+ model is used
for inference, there is no increase in the model complexity. It
outperforms baseline and DisOptNet by 2.71% and 2.31% re-
spectively. SKD-Net consistently outperforms C.E.N model,
with only 12% of its total number of parameters.

Fig. 3. Comparison of output predictions of SKD-Net with baseline and
state-of-the-art models. The cluttered car labels (blue) can be seen in (c-e),
as opposed to the ground truth labels. SKD-Net(f) is able to segment cars
more accurately. Our model is also able to predict bicycles (light brown) in
the second image, as opposed to the other models.

C. Qualitative Evaluation

The output predictions of state-of-the-art models trained
on MVSS dataset are shown in Fig. 3. SKD-Net performs
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feature distillation from optical images and acquires domain-
invariant features across various spectra for the same object
categories. This contributes to the model’s ability to make
superior predictions, particularly in roads, vehicles, and
pedestrians, where its performance surpasses that of other
models. In the figure, it can be seen that SKD-Net predicts
bicycles and street lights while the other models are not able
to predict them. In SKD-Net, contrastive learning helps to
better distinguish objects from each other. This can be seen
in the predictions of car for both the images, while the other
models give overlapping predictions.

D. Ablation Study
An ablation study was conducted, as shown in Table III,

to evaluate the significance of individual components within
SKD-Net, involving the removal of both the GSU block and
the contrastive learning loss. All experiments conducted have
the same training settings mentioned in the implementation
details. The table shows that the GSU gives a performance
boost of 1.68% as compared to the baseline model, by aiding
the knowledge distillation of the domain invariant features
across diverse modalities. The utilization of contrastive learn-
ing assists in preserving the style information during the
distillation process and improves the performance by 2.49%
as compared to the baseline. Combining both results in the
best overall performance.

V. CONCLUSIONS
This paper introduces a novel spectral-based knowledge

distillation scheme known as SKD-Net for semantic segmen-
tation tasks, for missing modality scenarios. The training of
the encoders involves using contrastive loss to preserve intra-
modality knowledge and a novel module known as Gated
Spectral Fusion is also proposed to aid this distillation pro-
cess. SKD-Net consistently achieves superior performance
on two public benchmarking datasets. It has an improvement
of 2.8% on average compared to the baseline segmentation
model without any increase in the model complexity during
the inference phase. It also outperforms C.E.N by 3.2% on
average with only 12% of its parameters.

REFERENCES

[1] Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and Jiayi Ma.
Piafusion: A progressive infrared and visible image fusion network
based on illumination aware. Inf. Fusion, 83-84:79–92, 2022.

[2] Ji, W., Li, J., Bian, C., Zhou, Z., Zhao, J., Yuille, A.L. and Cheng,
L., 2023. Multispectral Video Semantic Segmentation: A Benchmark
Dataset and Baseline. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 1094-1104).

[3] Kang, J., Wang, Z., Zhu, R., Xia, J., Sun, X., Fernandez-Beltran, R.
and Plaza, A., 2022. DisOptNet: Distilling semantic knowledge from
optical images for weather-independent building segmentation. IEEE
Transactions on Geoscience and Remote Sensing, 60, pp.1-15.

[4] Wang, Y., Huang, W., Sun, F., Xu, T., Rong, Y. and Huang, J., 2020.
Deep multimodal fusion by channel exchanging. Advances in neural
information processing systems, 33, pp.4835-4845.

[5] Jiang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
and Hartwig Adam. Encoder-Decoder with Atrous Separable Convo-
lution for Semantic Image Segmentation, Feb. 2018

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceed- ings of the
IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[8] Tan, M. and Le, Q., 2019, May. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International conference on
machine learning (pp. 6105-6114). PMLR.

[9] Hinton, G., Vinyals, O. and Dean, J., 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531.

[10] Feng, Y., Sun, X., Diao, W., Li, J. and Gao, X., 2021. Double similarity
distillation for semantic image segmentation. IEEE Transactions on
Image Processing, 30, pp.5363-5376.

[11] Garcia, N.C., Morerio, P. and Murino, V., 2018. Modality distillation
with multiple stream networks for action recognition. In Proceedings
of the European Conference on Computer Vision (ECCV) (pp. 103-
118).

[12] Crasto, N., Weinzaepfel, P., Alahari, K. and Schmid, C., 2019. Mars:
Motion-augmented rgb stream for action recognition. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recogni-
tion (pp. 7882-7891).

[13] Matthew D. Zeiler and Rob Fergus. Visualizing and under- standing
convolutional networks. In David Fleet, Tomas Pa- jdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages
818–833, Cham, 2014. Springer International Publishing.

[14] Arevalo, J., Solorio, T., Montes-y-Gómez, M. and González, F.A.,
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